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Critical behavior of the three-dimensional Ising model
with nearest-neighbor, next-nearest-neighbor, and plaquette interactions
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The critical and multicritical behavior of the simple cubic Ising model with nearest-neighbor, next-nearest-
neighbor, and plaquette interactions is studied using the cube and star-cube approximations of the cluster
variation method and the recently proposed cluster variation—&aui®ximant method. Particular attention is
paid to the line of critical end points of the ferromagnetic-paramagnetic phase transitiémuit§critical
exponents are calculated, and their values suggest that the transition belongs to a different universality class. A
rough estimate of the crossover exponent is also giM@h063-651X97)51201-3
PACS numbdss): 05.50:+(q, 64.60.Fr, 68.35.Rh

The Ising model was introduced in the 19203 for de- ing and the intersections of the Peierls interfaces are
scribing magnetic transitions and is still the subject of a veryweighted by the couplings,,J,,J; [4]. If Ba.Bc.B, are
intense research activity. In particular, the Ising model withrespectively the energy cost for a plagquette, a bending be-
nearest-neighbo(NN), next-nearest-neighbofNNN) and  tween two adjacent plaquettes and an intersection of four
plaquette interactions on the simple cubic lattice has beepjaquettes sharing a common dual link of the Peierls inter-
considered as a simple model for the statistical mechanics @hces, the relation with the couplings;,J,,Js is
random surface$2—4], microemulsiong5], and also as a Ba=23,+8Jy, Be=2(Js—Jy), Bi=—4(J,+J3) [3]. The
discretized string actiorithe so-called gonihedric model 54| (1) can be considered as a discrete realization of a
[6—10]. The critical behavior of the square lattice version of andom surface model with an extrinsic curvature energy
this mpdel has been studigd for many years af‘d is now We[lerm [24,25. Recently, the special case in which only bend-
egtabhshec[ll], but very.l|ttle has be.en done in 'ghe three- ings and intersections are taken into account and the area is
dimensional case. Previous mean-field calculatif®d2] . . . ~
have shown that the model exhibits a very rich phase dia[]Ot weighted at all (that 1S Ju/p=2K, Jpl =~ xl2,
gram, with lamellar and ordered bicontinuoils3] phases, J3/B=(1-«)/2, wherex=0 is the case of phantom sur-
disordered structured and nonstructured reg[dds15, and faces[26], while k— o represents the limit of complete self-

coexisting ferromaanetic and paramaanetic phases with gvoidance has been put in connection with a discretized
first-orde? wetting t?ansitiodle].p g P string modelthe so-called gonihedric modéb] and studied

The purpose of the present paper is to investigate the critY Savvidy and Wegnef7]. This choice of the couplings

cal properties of the model beyond the mean-field 1€¥@], corresponds to a zero temperature high degeneracy point

focusing mainly on the multicritical and crossover propertiesVhere all possible sequences of ™ and “ —" planes have
of the line of critical end points of the ferromagnetic- (€ same energy. A phase transition has been found in this
paramagnetic phase transition. This will be done by means JEstricted parameter space with exponents different from the
the cluster variation methoCVM) [18,19 in its cube and Usual three-dimension&8D) Ising exponent$8—10. It has
star-cube[20] approximations, and the recently proposedto be qbserved that this special case corresponds to the dis-
cluster variation—Padapproximant metho@CVPAM) [21—  order line[27] J,=—J,/4 as calculated in the mean-field
23). Before turning to the description of our results, we now&PProximation[12] and that in the two-dimensional case
give a short account of both the model and the method. there is no transition neither on the disorder lj28] nor on

The model is defined by the reduced Hamiltonianthe lineJ;=—J,/4[29]. _
H=—BH We will concentrate on the study of the phase diagram

around the region where the lamellar, the ferromagnetic and
the paramagnetic phases coexist, which is close to the line
H=J,2, sisj+J; > sis;+J3 > sisss, (1) J2=—Jy/4, and we will explain the origin of the transition
(i) (i) [i..k1] found in[8,9]. There is a particular physical interest in this
region due to the extremely low values of the surface tension
whereo;=*1 is the Ising variable associated with the site between coexisting phasgk?], which is an important prop-
i of our simple cubic lattice, and sums are respectively oveerty for applications in real surfactant systefb$
the NN pairs, NNN pairs, and plaquettes of the lattice. Let us now briefly discuss the methods we are going to
In terms of the Peierls surfaces separating domains afise. The cluster variation method is a powerful generalized
spins with different sign, not only the area but also the bendmean-field theory introduced by Kikuchi8] and then refor-
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FIG. 1. The phase diagram of the mod#l for J3=0. Solid and FIG. 2. The phase diagram of the modg) for x=1/3. Solid

the dashed lines represent first- and second-order transitions respegyq the dashed lines represent first- and second-order transitions

tively. respectively.

mulated in a very elegant waji9] as a truncated cluster temperatures usind log Padeapproximantg31] (see[23]

(cumulani expansion of the variational principle of statisti- for an application of the more sophisticated Adler's meth-

cal mechanics. In the cube approximation of the CVM onelds in order to extract accurate information about the criti-

haS to minimize the free energy density functionai Cal beh(?lVIOI‘, |.e.., |m'perVed Cr|t|CaI temperature's and
nonclassical, precise critical exponents. In test applications,

1 1 indeed, the CVPAM has produced results of quality almost
f[pgl=Tr(pgHe)+ =| Tr L(pe)— > > Tr L(papiag comparable to state of the art Monte Carlo simulations, but
B 2 plaguettes ' with a much smaller numerical effort.
1 1 We can describe our results. The ground states of the
+=> 111 =3 Tr Lipq e |, 2 model have been thoroughly investigated[BI; here we
4ed2ges (P2.eagd 85%5 (P15t @ shall consider the restricted parameter spdgel, and

k>0 with J3/J3,=(1—«)/(4«). In this region, the line

whereHyg is the contribution of a single cube to the Hamil- J,/J;= —1/4 is always the boundary between ferromagnetic
tonian (when splitting the total Hamiltoniai into single and lamellar ground states.
cube contributions one has to keep in mind that nearest- In Fig. 1 the phase diagram of the modg#) as given by
neighbor interactions are shared by four cubes and then withe CVM cube approximation is depicted in the plane
get a coefficient 1/4 inHg, and similarly next-nearest- J3=0. The line separating the paramagnetic and the ferro-
neighbor and plaquette interactions will get a coefficientmagnetic phasédashed lingis a second order line, with the
1/2), £(x)=x Inx, p, with a=8 (4, 2, 1) denotes the cube Uusual critical Ising transition at);=0.218 (shifted to
(respectively plaquette, edge, Sitgensity matrix, and the J1=0.222 by application of the CVPANI21]), to be com-
sums in the entropy part are over all plaguetesdges, sités pared with the best estimafig=0.22165[32]. The lamellar
of a single cubenotice that we have not assumed amy Phase—here consisting of alternate planes of different sign
priori symmetry property for our density matrices, and that—is separated from the paramagnetic and the ferromagnetic
the plaquette, edge and site matrices can be thought of @hase by a coexistence litgolid line) [33], which is asymp-
partial traces of the cube matyixn the following we shall totically close to the lind,= —J,/4 at low temperature. The
also use, for the ferromagnetic phase only, the star-cube agecond-order line ends onto the first order one with a critical
proximation, introduced ir{20], where it is described in end point at J$"°=0.865-0.005 and J$"=-0.2176
great detail for the NN cagg@nclusion of NNN and plaquette +0.0006. In the case of the gonihedric modé] with
interactions is indeed straightforwardror both approxima- =1, our value for the inverse critical temperature is
tions, the(numerical minimization task is greatly simplified B.=0.427 to be compared with the valge= 0.44 found by
by the so-called natural iteration meth&D,30. Monte Carlo simulation$8] and the upper boung.=1.49

Being an approximate variational theory, the CVM yieldscalculated in [9]. Notice that, since the lamellar-
necessarily classical values of the critical exponents. In ordeflerromagnetic coexistence line is slightly bent toward the
to overcome this major drawback, one of us has proposed tHamellar phasdand this feature persists a3+ 0), the criti-
cluster variation—Pad@pproximant method21-23. The cal point of the gonihedric model is extremely close to our
basic idea of the CVPAM is that, since the CVM with 7-8 critical end point, and this has important consequences on
point or larger clusters is very accurate at high and lowthe meaning of the exponents that one can define, as we shall
enough temperatures, one can extrapolate the results at susie.
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TABLE I. Inverse critical temperaturek,(R) =1/T.(R) and order parameter amplitudes o 1.

R -0.14 -0.15 -0.16 -0.17 -0.18 -0.19 -0.20 -0.21 -0.22 -0.23 -0.24
J1(R) 0.360 0.378 0.398 0.421 0.447 0.476 0.511 0552 0.602 0.663 0.743
B(R) 1.84 1.87 1.90 1.95 2.01 2.06 2.17 2.28 2.47 2.68 3.15
The topology of the phase diagram at varyiagemains T(R)—To(Regp = (R— RCEP)W’ (4)

the same as af;=0, but in the range & «<«k*, with

k*=0.8, there is a tricritical pointsee Fig. 2 on the for the ferromagnetic critical temperature and
ferromagnetic-paramagnetic transition line at negative values Brsna— B

of J, [34]. The transition line becomes of first order before B(R)x(R—Regp) ¢, w=—nd TCEP
reaching the lamellar phase. ¢

_ The critical behavior suggested by the phase diagram c\f\/hereﬁ,smgz0.327[36] is the usual three-dimensional Ising
Fig. 1 can be now discussed. The first important point is tha&xponen(a high-order CVPAM analysis on the simple cubic

the critical_end point we have foun_’(dctually a Iine_ of_criti- lattice predicteds,n,=0.325(4) [23]), for the critical am-
cal end points, since can vary, which does not exist in two plitude B(R), which is defined by

dimensions[11], must be described by critical exponents

which differ from the usual three-dimensional Ising ones, m=B(R)(T,(R)—T)Asins, R>Rcgp. (6)
which apply to the ferromagnetic-paramagnetic critical sur- i

face. As a consequence, in the vicinity of the line of critical USINg the CVPAM we have extrapolated the low-
end points, which bounds the critical surface, it is natural tg€MPerature ferromagnetic order parametre smallest
expect some crossover phenomenon. valu_e used being 0.8@|ven _by the CVM star-cube approxi-

In Ref.[10] we have already calculated with the CVPAM _matlon, to calculate the critical temperatures and amplitudes
the order parameter critical expone@tof the gonihedric [N the range—0.24<R<—0.14 forx=1,2 and 10.T(R)
model (using CVM results up to a temperature which wasWas determined by requiring that(R)-biasedD log Pade'
less than half the transiton temperaturefinding apPProximants gavgsng=0.327 and then the critical ampli-
=0.062+0.003 (together with the improved estimate for tude COUIdfﬁb_e obtained by making approximants to
the inverse critical temperaturg.=0.434), which agrees (Tc(R)—T) #snam. As a check, for the simple NN lIsing
well with the Monte Carlo estimate®/»=0.04(1) and Model (that is «=0 and R=0) we have obtained
»=1.2(1)[8]. In view of the above considerations this must B(0)=1.626, to be compared with the value 1.691 904 5 re-
be regarded as an effective exponéntour picture the criti- Ported by Blde and Talapov. The results far=1 are re-
cal transition of the gonihedric model lies on the universalPorted in Table I. Several fits were then made. The fits on the
ferromagnetic-paramagnetic critical surface, and hence ha¥sis of Eq(4) gave¢$=1.13, 1.09, and 1.03 for=1,2 and
to be described by the usual 3D Ising expongritgluced by ~ 10 respectively, while the fits to E¢S) gave $=1.16 and
a crossover phenomenon. Nevertheless, the critical transitioh20 for«=1 and 2 and were inconclusive far=10. A fit
of the gonihedric model is extremely close to our critical endWith Reep free was also made to E¢F) for «=1, and the
point (CEP) and this means that the corresponding exponent&esult wasRcge=—0.249 774, confirming thaRcep= — 1/4
are very good approximations to the critical end point onesiS @ very good approximation.

Thus from now on we shall use the estimate A reasonable final estimate for the crossover exponent
Beer=0.062+0.003. In order to calculate als@cgp, We might then bep=1.1(1), but it must be taken with some care
have determined the high temperature susceptibility fo,for sever_al reasons. Apart from_ t_he various approximations
J;=0 and J,=—J,/4 in the cube approximation of the m_vqlved in the _calcglatlons op, it is a matter (.)f.fa.ct. that_a
CVM and, according to the CVPAM prescriptions, we haveSimilar calculation in the_case of the semi-infinite Ising
determinedD log Padeapproximants(biased with our im- Model[22] gave a result differing by 10-30 % from exten-
proved B.) to it, and from these we have deduced SiV& compu_ter simulations, and furthermore the true multi-
Yegr=1.41+0.02. critical scaling law for the order parameter might be more

The analysis of the crossover phenomenon is a considefPmPplicated than our Eg3) (e.g., the scaling axes might not
ably more difficult task, and we have tried to give an esti-P€ parallel to th& andR axes, although the relatively good
mate of the crossover exponepit|35] proceeding along the quality of the fits seems to indicate that E8) is fairly good.
lines described ifi22]. From now on we sel,/J;=R. As- Summarizing, we have studied the critical and multicriti-
suming that near the critical end point, but still in the ferro- ¢l behavior of the simple cubic Ising model with NN, NNN,

magnetic phase, the order parameter has a multicritical sca®d pPlaquette interactions, calculating the exponents of a line
ing law given by of critical end points which does not exist in two dimensions

and might be relevant for some surfactant system. We have
R—Reep al_so tried to g?ve an esti_mate of the crossover exponent, but
m=tAcerf(z), z= 5 3 this can certainly be refined using, e.g., Monte Carlo simu-
lations or series expansions combined with the partial differ-
ential approximants methd®7].

©)

wheret is the deviation from the critical temperature and
Rcep can be well approximated by 1/4 (see also beloyy We are indebted to A. Maritan, D.A. Johnston, and M.
one can derive the scaling laws Caselle for valuable discussions.
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