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Critical behavior of the three-dimensional Ising model
with nearest-neighbor, next-nearest-neighbor, and plaquette interactions
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The critical and multicritical behavior of the simple cubic Ising model with nearest-neighbor, next-nearest-
neighbor, and plaquette interactions is studied using the cube and star-cube approximations of the cluster
variation method and the recently proposed cluster variation–Pade´ approximant method. Particular attention is
paid to the line of critical end points of the ferromagnetic-paramagnetic phase transition: its~multi!critical
exponents are calculated, and their values suggest that the transition belongs to a different universality class. A
rough estimate of the crossover exponent is also given.@S1063-651X~97!51201-3#
PACS number~s!: 05.50.1q, 64.60.Fr, 68.35.Rh
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The Ising model was introduced in the 1920s@1# for de-
scribing magnetic transitions and is still the subject of a v
intense research activity. In particular, the Ising model w
nearest-neighbor~NN!, next-nearest-neighbor~NNN! and
plaquette interactions on the simple cubic lattice has b
considered as a simple model for the statistical mechanic
random surfaces@2–4#, microemulsions@5#, and also as a
discretized string action~the so-called gonihedric mode!
@6–10#. The critical behavior of the square lattice version
this model has been studied for many years and is now
established@11#, but very little has been done in the thre
dimensional case. Previous mean-field calculations@3,12#
have shown that the model exhibits a very rich phase
gram, with lamellar and ordered bicontinuous@13# phases,
disordered structured and nonstructured regions@14,15#, and
coexisting ferromagnetic and paramagnetic phases wit
first-order wetting transition@16#.

The purpose of the present paper is to investigate the c
cal properties of the model beyond the mean-field level@17#,
focusing mainly on the multicritical and crossover propert
of the line of critical end points of the ferromagneti
paramagnetic phase transition. This will be done by mean
the cluster variation method~CVM! @18,19# in its cube and
star-cube@20# approximations, and the recently propos
cluster variation–Pade´ approximant method~CVPAM! @21–
23#. Before turning to the description of our results, we no
give a short account of both the model and the method.

The model is defined by the reduced Hamiltoni
H52bH

H5J1(̂
i j &

sisj1J2 (
^^ i j &&

sisj1J3 (
[ i , j ,k,l ]

sisjsksl , ~1!

wheres i561 is the Ising variable associated with the s
i of our simple cubic lattice, and sums are respectively o
the NN pairs, NNN pairs, and plaquettes of the lattice.

In terms of the Peierls surfaces separating domains
spins with different sign, not only the area but also the be
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ing and the intersections of the Peierls interfaces
weighted by the couplingsJ1 ,J2 ,J3 @4#. If bA ,bC ,b I are
respectively the energy cost for a plaquette, a bending
tween two adjacent plaquettes and an intersection of f
plaquettes sharing a common dual link of the Peierls in
faces, the relation with the couplingsJ1 ,J2 ,J3 is
bA52J118J2, bC52(J32J2), b I524(J21J3) @3#. The
model ~1! can be considered as a discrete realization o
random surface model with an extrinsic curvature ene
term @24,25#. Recently, the special case in which only ben
ings and intersections are taken into account and the are
not weighted at all ~that is J1 /b52k, J2 /b52k/2,
J3 /b5(12k)/2, wherek50 is the case of phantom su
faces@26#, while k→` represents the limit of complete sel
avoidance! has been put in connection with a discretiz
string model~the so-called gonihedric model! @6# and studied
by Savvidy and Wegner@7#. This choice of the couplings
corresponds to a zero temperature high degeneracy p
where all possible sequences of ‘‘1 ’’ and ‘‘ 2 ’’ planes have
the same energy. A phase transition has been found in
restricted parameter space with exponents different from
usual three-dimensional~3D! Ising exponents@8–10#. It has
to be observed that this special case corresponds to the
order line @27# J252J1/4 as calculated in the mean-fiel
approximation@12# and that in the two-dimensional cas
there is no transition neither on the disorder line@28# nor on
the lineJ252J1/4 @29#.

We will concentrate on the study of the phase diagr
around the region where the lamellar, the ferromagnetic
the paramagnetic phases coexist, which is close to the
J252J1/4, and we will explain the origin of the transitio
found in @8,9#. There is a particular physical interest in th
region due to the extremely low values of the surface tens
between coexisting phases@12#, which is an important prop-
erty for applications in real surfactant systems@5#.

Let us now briefly discuss the methods we are going
use. The cluster variation method is a powerful generali
mean-field theory introduced by Kikuchi@18# and then refor-
R17 © 1997 The American Physical Society
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mulated in a very elegant way@19# as a truncated cluste
~cumulant! expansion of the variational principle of statis
cal mechanics. In the cube approximation of the CVM o
has to minimize the free energy density functional

f @r8#5Tr~r8H8!1
1

b FTr L~r8!2
1

2 (
plaquettes

Tr L~r4,plaq!

1
1

4(
edges

Tr L~r2,edge!2
1

8(sites Tr L~r1,site!G , ~2!

whereH8 is the contribution of a single cube to the Ham
tonian ~when splitting the total HamiltonianH into single
cube contributions one has to keep in mind that near
neighbor interactions are shared by four cubes and then
get a coefficient 1/4 inH8, and similarly next-nearest
neighbor and plaquette interactions will get a coefficie
1/2!, L(x)5x lnx, ra with a58 ~4, 2, 1! denotes the cube
~respectively plaquette, edge, site! density matrix, and the
sums in the entropy part are over all plaquettes~edges, sites!
of a single cube~notice that we have not assumed anya
priori symmetry property for our density matrices, and th
the plaquette, edge and site matrices can be thought o
partial traces of the cube matrix!. In the following we shall
also use, for the ferromagnetic phase only, the star-cube
proximation, introduced in@20#, where it is described in
great detail for the NN case~inclusion of NNN and plaquette
interactions is indeed straightforward!. For both approxima-
tions, the~numerical! minimization task is greatly simplified
by the so-called natural iteration method@20,30#.

Being an approximate variational theory, the CVM yiel
necessarily classical values of the critical exponents. In o
to overcome this major drawback, one of us has proposed
cluster variation–Pade´ approximant method@21–23#. The
basic idea of the CVPAM is that, since the CVM with 7–
point or larger clusters is very accurate at high and l
enough temperatures, one can extrapolate the results at

FIG. 1. The phase diagram of the model~1! for J350. Solid and
the dashed lines represent first- and second-order transitions re
tively.
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temperatures usingD log Pade´ approximants@31# ~see@23#
for an application of the more sophisticated Adler’s me
ods! in order to extract accurate information about the cr
cal behavior, i.e., improved critical temperatures a
nonclassical, precise critical exponents. In test applicatio
indeed, the CVPAM has produced results of quality alm
comparable to state of the art Monte Carlo simulations,
with a much smaller numerical effort.

We can describe our results. The ground states of
model have been thoroughly investigated in@3#; here we
shall consider the restricted parameter spaceJ1 ,J2 and
k.0 with J3 /J15(12k)/(4k). In this region, the line
J2 /J1521/4 is always the boundary between ferromagne
and lamellar ground states.

In Fig. 1 the phase diagram of the model~1! as given by
the CVM cube approximation is depicted in the pla
J350. The line separating the paramagnetic and the fe
magnetic phase~dashed line! is a second order line, with the
usual critical Ising transition atJ150.218 ~shifted to
J150.222 by application of the CVPAM@21#!, to be com-
pared with the best estimateJ150.22165@32#. The lamellar
phase—here consisting of alternate planes of different s
—is separated from the paramagnetic and the ferromagn
phase by a coexistence line~solid line! @33#, which is asymp-
totically close to the lineJ252J1/4 at low temperature. The
second-order line ends onto the first order one with a crit
end point at J1

end50.86560.005 and J2
end520.2176

60.0006. In the case of the gonihedric model@6# with
k51, our value for the inverse critical temperature
bc50.427 to be compared with the valuebc50.44 found by
Monte Carlo simulations@8# and the upper boundbc51.49
calculated in @9#. Notice that, since the lamellar
ferromagnetic coexistence line is slightly bent toward t
lamellar phase~and this feature persists atJ3Þ0), the criti-
cal point of the gonihedric model is extremely close to o
critical end point, and this has important consequences
the meaning of the exponents that one can define, as we
see.

ec-
FIG. 2. The phase diagram of the model~1! for k51/3. Solid

and the dashed lines represent first- and second-order trans
respectively.
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TABLE I. Inverse critical temperaturesJc(R)51/Tc(R) and order parameter amplitudes fork51.

R -0.14 -0.15 -0.16 -0.17 -0.18 -0.19 -0.20 -0.21 -0.22 -0.23 -0.
J1,c(R) 0.360 0.378 0.398 0.421 0.447 0.476 0.511 0.552 0.602 0.663 0.
B(R) 1.84 1.87 1.90 1.95 2.01 2.06 2.17 2.28 2.47 2.68 3.1
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The topology of the phase diagram at varyingk remains
the same as atJ350, but in the range 0,k,k* , with
k*.0.8, there is a tricritical point~see Fig. 2! on the
ferromagnetic-paramagnetic transition line at negative va
of J2 @34#. The transition line becomes of first order befo
reaching the lamellar phase.

The critical behavior suggested by the phase diagram
Fig. 1 can be now discussed. The first important point is t
the critical end point we have found~actually a line of criti-
cal end points, sincek can vary!, which does not exist in two
dimensions@11#, must be described by critical exponen
which differ from the usual three-dimensional Ising one
which apply to the ferromagnetic-paramagnetic critical s
face. As a consequence, in the vicinity of the line of critic
end points, which bounds the critical surface, it is natura
expect some crossover phenomenon.

In Ref. @10# we have already calculated with the CVPA
the order parameter critical exponentb of the gonihedric
model ~using CVM results up to a temperature which w
less than half the transition temperature!, finding
b50.06260.003 ~together with the improved estimate fo
the inverse critical temperaturebc50.434), which agrees
well with the Monte Carlo estimatesb/n50.04(1) and
n51.2(1) @8#. In view of the above considerations this mu
be regarded as an effective exponent~in our picture the criti-
cal transition of the gonihedric model lies on the univer
ferromagnetic-paramagnetic critical surface, and hence
to be described by the usual 3D Ising exponents!, induced by
a crossover phenomenon. Nevertheless, the critical trans
of the gonihedric model is extremely close to our critical e
point ~CEP! and this means that the corresponding expone
are very good approximations to the critical end point on
Thus from now on we shall use the estima
bCEP50.06260.003. In order to calculate alsogCEP, we
have determined the high temperature susceptibility
J350 and J252J1/4 in the cube approximation of th
CVM and, according to the CVPAM prescriptions, we ha
determinedD log Pade´ approximants~biased with our im-
proved bc) to it, and from these we have deduce
gCEP51.4160.02.

The analysis of the crossover phenomenon is a consi
ably more difficult task, and we have tried to give an es
mate of the crossover exponentf @35# proceeding along the
lines described in@22#. From now on we setJ2 /J15R. As-
suming that near the critical end point, but still in the ferr
magnetic phase, the order parameter has a multicritical s
ing law given by

m.tbCEPf ~z!, z5
R2RCEP

tf
, ~3!

where t is the deviation from the critical temperature a
RCEP can be well approximated by21/4 ~see also below!,
one can derive the scaling laws
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Tc~R!2Tc~RCEP!}~R2RCEP!
1/f ~4!

for the ferromagnetic critical temperature and

B~R!}~R2RCEP!
2v, v5

b Ising2bCEP

f
, ~5!

whereb Ising.0.327@36# is the usual three-dimensional Isin
exponent~a high-order CVPAM analysis on the simple cub
lattice predictedb Ising50.325(4) @23#!, for the critical am-
plitudeB(R), which is defined by

m.B~R!~Tc~R!2T!b Ising, R.RCEP. ~6!

Using the CVPAM we have extrapolated the low
temperature ferromagnetic order parameter~the smallest
value used being 0.89! given by the CVM star-cube approxi
mation, to calculate the critical temperatures and amplitu
in the range20.24<R<20.14 for k51,2 and 10.Tc(R)
was determined by requiring thatTc(R)-biasedD log Pade´
approximants gaveb Ising50.327 and then the critical ampli
tude could be obtained by making approximants
(Tc(R)2T)2b Isingm. As a check, for the simple NN Ising
model ~that is k50 and R50) we have obtained
B(0).1.626, to be compared with the value 1.691 904 5
ported by Blöte and Talapov. The results fork51 are re-
ported in Table I. Several fits were then made. The fits on
basis of Eq.~4! gavef51.13, 1.09, and 1.03 fork51,2 and
10 respectively, while the fits to Eq.~5! gavef51.16 and
1.20 fork51 and 2 and were inconclusive fork510. A fit
with RCEP free was also made to Eq.~5! for k51, and the
result wasRCEP520.249 774, confirming thatRCEP521/4
is a very good approximation.

A reasonable final estimate for the crossover expon
might then bef51.1(1), but it must be taken with some ca
for several reasons. Apart from the various approximatio
involved in the calculations off, it is a matter of fact that a
similar calculation in the case of the semi-infinite Isin
model @22# gave a result differing by 10–30 % from exten
sive computer simulations, and furthermore the true mu
critical scaling law for the order parameter might be mo
complicated than our Eq.~3! ~e.g., the scaling axes might no
be parallel to theT andR axes!, although the relatively good
quality of the fits seems to indicate that Eq.~3! is fairly good.

Summarizing, we have studied the critical and multicri
cal behavior of the simple cubic Ising model with NN, NNN
and plaquette interactions, calculating the exponents of a
of critical end points which does not exist in two dimensio
and might be relevant for some surfactant system. We h
also tried to give an estimate of the crossover exponent,
this can certainly be refined using, e.g., Monte Carlo sim
lations or series expansions combined with the partial diff
ential approximants method@37#.

We are indebted to A. Maritan, D.A. Johnston, and
Caselle for valuable discussions.
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